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1. Introduction 

Human nature wants to continue to progress and 

develop in order to achieve a better quality of life. This 

also happens in the world of research. Experts in the 

social or behavioral sciences, including management, 

consistently develop research methods that can be 

used to obtain better, perfect, fast, accurate, effective, 

and efficient quality research results (Burhan, 2011). 

Experts in the field of social or behavioral sciences, 

including management, have developed a research 

method called structural equation modelling (SEM) 

(Byrne, 2013). At first, the SEM method was only good 

at the conception level. At that time, the SEM method 

could not be operationalized due to technological 

limitations. With the rapid development of computer 

technology, the SEM method is now becoming 

increasingly recognized and widely used in behavioral 

and management research (Capmourteres, 2016). The 

SEM method is a development of path analysis and 

multiple regression, which are both forms of 

multivariate analysis models. In an associative, 

multivariate-correlational, or causal-effect analysis, 

the SEM method seems to break the domination of the 

use of path analysis and multiple regression, which 

have been used for decades. Compared to path 

analysis and multiple regression, the SEM method is 

superior because it can analyze data more 

comprehensively (Chang, 1981). Data analysis in path 
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analysis and multiple regression was only carried out 

on the total variable score data, which is the sum of 

the research instrument items. Thus, path analysis 

and multiple regression are actually only carried out 

at the level of latent variables (unobserved). In 

comparison, data analysis in the SEM method can 

penetrate deeper because it is carried out on each item 

score of a research variable instrument. Instrument 

items in SEM analysis are referred to as manifest 

variables (observed) or indicators of a construct or 

latent variable (Chen, 2010). 

The SEM method has stronger predicting power 

than path analysis and multiple regression because 

SEM is able to analyze at the deepest level the 

variables or constructs studied (Cohen, 2013). The 

SEM method is more comprehensive in explaining 

research phenomena. Meanwhile, path analysis and 

multiple regression are only able to reach the level of 

latent variables, so they experience a dead end in 

parsing and analyzing empirical phenomena that 

occur at the level of items or indicators of latent 

variables. Judging from the data used, path analysis 

and multiple regression actually only reach the outer 

shell of a research model (Cudeck, 1994). In 

comparison, the SEM method can be likened to being 

able to reach as well as parse and analyze the deepest 

entrails of a research model. The SEM method is 

expected to be able to answer the weaknesses and 

impasses faced by the previous generation of 

multivariate methods, namely path analysis and 

multiple regression (Curran, 2003). The development 

of SEM methods is becoming increasingly significant 

in the practice of social, behavioral, and management 

research, along with advances in information 

technology (Duncan et al., 2013). Many multivariate 

statistical methods which were difficult to operate 

manually in the 1950s, such as factor analysis, 

multiple regression with more than three independent 

variables, path analysis, and discriminant analysis, 

gradually became necessary because of the invention 

of computer programs such as SPSS (Statistical 

Package for Social Science), Minitab, Prostat, QSB, 

SAZAM, etc. The SEM method is currently estimated 

to be the most dominant multivariate method. 

Computer programs that can currently be used to 

process data in SEM research methods include AMOS, 

LISREL, PLS, GSCA, and TETRAD. This literature 

review aims to describe the use of structural equation 

modeling in research (Eisenhauer et al., 2015). 

 

The benefits of SEM in research 

In general, SEM can be used to analyze research 

models that have several independents (exogenous) 

and dependent (endogenous) variables, as well as 

moderating or intervening variables (Fan et al., 1999). 

SEM provides several benefits and advantages for 

researchers, including building research models with 

many variables, examining variables or constructs 

that cannot be observed or cannot be measured 

directly (unobserved), testing measurement errors 

(measurement errors) for observed variables or 

constructs (observed), confirming the theory in 

accordance with research data (confirmatory factor 

analysis), being able to answer various research 

problems in a more systematic and comprehensive 

analysis set; more illustrative, robust and reliable than 

the regression model when modeling interaction, non-

linearity, measurement error, correlation of error 

terms, and correlation between multiple independent 

latent variables; used as an alternative to path 

analysis and covariate-based time series data 

analysis; factor, path and regression analysis; explain 

the complex interrelationships of variables and direct 

or indirect effects of one or several variables on other 

variables; and has higher flexibility for researchers to 

relate the theory with data (Fritz et al., 2007; Grace, 

2006). 

 

Types of SEM 

 As stated above, in general, the SEM method can 

be classified into two types, namely covariance-based 

structural equation modelling (CB-SEM) and variance 
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or component-based SEM (VB-SEM), which includes 

partial least squares (PLS) and generalized structured 

component analysis (GSCA) (Grace, 2008; Grace, 

2010). A variant is the deviation of the data from the 

mean (average) value of the sample data. Variance 

measures the deviation of data from the mean value of 

a sample, so it is a measure of metric variables. 

Mathematically, the variance is the average of the 

squared differences between each observation and the 

mean, so the variance is the average squared value of 

the standard deviation (Haavelmo, 1943).  A variable 

must have a variance that is always positive. If it is 

zero, then it is not a variable but a constant. 

Meanwhile, covariance shows a linear relationship 

that occurs between two variables, namely X and Y. If 

a variable has a positive linear relationship, then the 

covariance is positive. If the relationship between X 

and Y is opposite, then the covariance is negative. If 

there is no relationship between the two variables, X 

and Y, then the covariance is zero. 

 

Covariance-based structural equation modelling 

(CB-SEM) 

Covariance-based SEM (CB-SEM) was first 

developed by Joreskog (1973), Keesling (1972), and 

Wiley (1973). CB-SEM became popular after the 

availability of the LISREL III program developed by 

Joreskog and Sorbom in the mid-1970s. By using the 

maximum likelihood (ML) function, CB-SEM tries to 

minimize the difference between the sample 

covariance matrix and the covariance matrix predicted 

by the theoretical model so that the estimation process 

produces a residual covariance matrix with a small 

value close to zero. Some things that need to be 

considered in CB-SEM analysis include the following: 

a) The assumption of using CB-SEM is like the 

parametric analysis. The assumptions that must be 

met are that the observed variables must have a 

multivariate normal distribution, and the observations 

must be independent of one another. If the sample is 

small and not asymptotic, it will give poor parameter 

estimates and statistical models or even produce a 

negative variance, which is called the Heywood Case. 

b) A small sample size will potentially result in a Type 

II error, i.e., a bad model will still result in a fit model. 

c) CB-SEM analysis requires the form of latent 

variables whose indicators are reflective. In the 

reflective model, indicators or manifest are considered 

variables that are influenced by latent variables 

according to the classical measurement theory. In the 

reflective indicator model, indicators in a construct 

(latent variable) are influenced by the same concept. 

Changes in one item or indicator will affect changes in 

other indicators in the same direction. The examples 

referred to as reflective variables are: 

 

 

 

 

 

     

 

  

 

 

 

 

 

 

 

 

 

 

Figure 1. An example of a reflective variable from a latent (construct) variable. Democratic, autocratic, and Laizez-

faire are reflective variables of leadership. Reflective variables are variables that stay away from latent (construct) 

variables, as shown in the blue arrows above.
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Variance-based SEM (VB-SEM) 

 PLS-SEM     

 PLS-SEM aims to test predictive relationships 

between constructs by seeing whether there is a 

relationship or influence between these constructs 

(Hair et al., 2013). The logical consequence of using 

PLS-SEM is that testing can be carried out without a 

strong theoretical basis, ignoring some assumptions 

(non-parametric) and the parameter accuracy of the 

prediction model seen from the value of the coefficient 

of determination (R2). PLS-SEM is very appropriate for 

use in research that aims to develop theory. PLS-SEM 

was developed to overcome tests that cannot be done 

with CB-SEM. (Harrington, (2009). For example, in 

testing formative variables, the examples of formative 

variables are as follows: 

 

 

 

 

     

 

  

 

 

 

 

Figure 2. An example of a formative variable from latent (construct) variables. Education, Occupation, and Income 

are formative variables of socioeconomic status. Formative variables are variables that lead to or influence or form 

latent (construct) variables, as shown in the blue arrow above. 

 

GSCA 

  GSCA combines the characteristics found in CB-

SEM and PLS-SEM. GSCA can handle latent variables 

with many indicators, the same as PLS-SEM, requiring 

goodness of fit model criteria, and indicators and 

constructs must be correlated like CB-SEM. Until now, 

the GSCA method is rarely used widely by researchers 

because this method is relatively new. GSCA has the 

same goal as PLS-SEM, does not require the 

assumption of multivariate normality data, and can be 

tested without a strong theoretical basis with a small 

number of samples (Hoyle, 2013). 

Model covariance-based SEM (CB-SEM) is often 

called hard modeling, while component-based or 

variance-based SEM (VB-SEM) modeling is called soft 

modeling. Hard modeling aims to provide a statement 

about the causality relationship or provide a 

description of the mechanism of the causality 

relationship (cause and effect). This provides an ideal 

picture scientifically in data analysis. However, the 

data to be analyzed does not always meet the ideal 

criteria, so it cannot be analyzed by hard modeling 

(Hu, 1999). As a solution, soft modeling tries to 

analyze data that is not ideal. Literally, soft actually 

means soft or soft, but in the research context, soft is 

defined as not based on assumptions on the scale of 

measurement, data distribution, and sample size 

(Iacobucci, 2010). The main purpose of analysis with 

hard modeling is to test the causal relationship 

between those that have been built based on the 

theory and whether the model can be confirmed with 

empirical data. In comparison, the main objective of 

soft modeling analysis aims to find predictive linear 

relationships between latent constructs. It should be 

understood that a causality or estimation relationship 

is not the same as a predictive relationship (Jackson 

et al., 2009). In terms of causality, CB-SEM looks for 

invariant parameters that structurally or functionally 

describe how the world's systems work. The invariant 

parameter describes the causal relationship between 

variables in a closed system so that events can be fully 

controlled. Whereas in Partial Least Square, Variance, 
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or Component-Based SEM, the optimal linear 

relationship between latents is calculated and 

interpreted as the best available predictive 

relationship with all the limitations that exist 

(Joreskog, 1993). So that the existing events can not 

be fully controlled, if the data to be analyzed meets all 

the assumptions required by CB-SEM, then the 

researcher should analyze the data by hard modelling 

using appropriate software, such as AMOS and 

LISREL (Kim, 2005). 

If the data does not meet all the required 

assumptions, but the researcher still uses hard 

modelling or CB-SEM analysis, then several problems 

may be encountered, an improper solution or an 

imperfect solution because of the Heywood Case, 

which is a symptom of a negative variance value; the 

model becomes unidentified due to indeterminacy; and 

non-convergence algorithms. If that conditions occur 

and we still want to analyze the data, then our goal is 

not to change causality between variables but to find 

optimal predictive linear relationships using 

component or variance-based SEM (Lamb et al., 2014). 

Based on the objective of empirical research, the 

quantitative paradigm can be divided into two, namely 

estimation and prediction. Estimation research is 

research that aims to test an empirical model with 

valid and reliable measurements. Testing and 

measurement are carried out at the indicator level. The 

hypothesis being tested is the model hypothesis. The 

measurement criterion for testing the feasibility of the 

model is called the goodness of fit test (LeCun et al., 

2015). For estimation research purposes, CB-SEM is 

an appropriate technique to use. Prediction research 

is research that aims to examine the influence between 

constructs to predict causal relationships. Testing and 

measurement are carried out at the level of constructs 

or latent variables (McDonald, 2002). The hypothesis 

that is done is generally a partial hypothesis. Partial 

testing criteria with a significance test predicting the 

relationship between variables using the t-statistic 

test. PLS-SEM and regression techniques are the right 

choices of statistical techniques to use (Mulaik et al., 

1989; Murtaugh, 2009). Therefore, component or 

variance-based SEM (PLS and GSCA) is only used if 

the data we have cannot be solved with covariance-

based SEM (CB-SEM). 

 

2. Conclusion 

SEM can be used to analyze research models that 

have several independent and dependent variables as 

well as moderating or intervening variables. 
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